Financial Services and Decisions

11 April, 2010

Seminar 8

Cash Flow of Loans (Part 2)

Lecturer
Gábor Kovács PhD dr.

Valuation of annuity loan

-Basic types of loan construction:
\Rightarrow Principal is repaid in equal instalments
$>$ Annuity loan
-Annuity loan:
$>$ Size of instalment is constant

$$
>\mathrm{C}_{1}=\mathrm{C}_{2}=\ldots=\mathrm{C}_{\mathrm{T}}
$$

-What determines the size of instalments?
$>$ Time value of money (review)

Time Value of Money Problem 1

-Which investment should be taken?

Year	1	2
Investment ,A"	1 million HUF	
Investment ,, B		1 million HUF

11 April, 2010

Time Value of Money

-A dollar today worth more than a dollar
tomorrow

- Why?
- When not?

11 April, 2010

Time Value of Money Problem 2

-Which investment is most valuable?

Year	1	2
Investment ,A"	3 million HUF	
Investment ,, B"		4 million HUF

11 April, 2010

Time Value of Money

- Cost of alternative (discount rate)
= it is the return foregone by investing in the project
rather than investing in another investments.
-Rate of return offered by equivalent investment alternatives in the market.
-Concept of equivalent investments
11 April, 2010

Present Value

-Calculation:

$$
P V\left(C_{t}\right)=\frac{C_{t}}{(1+r)^{t}}=C_{t} \cdot \frac{1}{(1+r)^{t}}=C_{t} \cdot D F(r, t)
$$

Market

11 April, 2010

Present Value Problem 3

-How much does the investment alternative worth? The appropriate discount rate is 15%.

Year	1	2	3
"C" projekt	2 million HUF	1 million HUF	1 million HUF

11 April, 2010

Present Value

- Value of projects:

= sum of present value of expected cash flows

$$
\sum P V=\frac{C_{1}}{(1+r)^{1}}+\frac{C_{2}}{(1+r)^{2}}+\frac{C_{3}}{(1+r)^{3}}+\ldots
$$

Annuity
-Stream of equal payments to an individual that
occur at predetermined intervals
-The payments may continue for a fixed period
Katriz Gruas Factury of Economics
-Annuities are most often associated with
insurance companies, loans, bonds

Annuity

-The value of an annuity:

$$
\begin{aligned}
& \sum P V=\frac{C}{(1+r)^{1}}+\frac{C}{(1+r)^{2}}+\ldots+\frac{C}{(1+r)^{T}} \\
& \sum P V=P V=\frac{C}{r} \cdot\left[1-\frac{1}{(1+r)^{T}}\right]= \\
& =C \cdot\left[\frac{1}{r} \cdot\left(1-\frac{1}{(1+r)^{T}}\right)\right]=C \cdot A F(r, T)
\end{aligned}
$$

Work in groups

True or false?
a) As the discount rate increases, the value of an asset increases.
b) As the expected growth rate in cash flows increases, the value of an asset increases.
c) As the life of an asset is lengthened, the value of that asset increases.
d) As the uncertainty about the expected cash flows increases, the value of an asset increases.
e) An asset with an infinite life (i.e., it is expected to last forever) will have an infinite value.

11 April, 2010

Valuation of annuity loans

What determines instalments?

- Instalment $=C_{t}=R_{t}+I_{t}$

$$
\begin{aligned}
& >\text { Repayment }=R_{t}\left(\sum R_{t}=P\right) \\
& >I_{t}=\text { Payment of interest: } I_{t}=P_{t} \cdot i\left(P_{t}=P_{(t-1)}-\right.
\end{aligned}
$$

$$
\left.R_{(t-1)}\right)
$$

- Annuity loan:
$>\mathrm{C}_{\mathrm{t}}=\mathrm{C}$ is constant
11 April, 2010

Valuation of annuity loans

-Bank's attitude
-Lending is making an investment
-Cash flow of the investment is an annuity
-Return on this investment is the interest rate (i)
-What does this investment worth?
-Size of principal (P) equals the value of annuity

Valuation of annuity

-The value of an annuity:

$$
\begin{aligned}
& \sum P V=\frac{C}{(1+i)^{1}}+\frac{C}{(1+i)^{2}}+\ldots+\frac{C}{(1+i)^{T}}=P \\
& \sum P V=P V=\frac{C}{i} \cdot\left[1-\frac{1}{(1+i)^{T}}\right]=P \Rightarrow \\
& C=\frac{P}{\frac{1}{-} \cdot\left[1-\frac{1}{}\right]}=\frac{P}{A F(i ; T)}
\end{aligned}
$$

Thank you for your attention

11 April, 2010

